Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The first genetic linkage map for Fraxinus pennsylvanica and syntenic relationships with four related species.

Identifieur interne : 000678 ( Main/Exploration ); précédent : 000677; suivant : 000679

The first genetic linkage map for Fraxinus pennsylvanica and syntenic relationships with four related species.

Auteurs : Di Wu [États-Unis] ; Jennifer Koch [États-Unis] ; Mark Coggeshall [États-Unis] ; John Carlson [États-Unis]

Source :

RBID : pubmed:30604323

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

The genetic linkage map for green ash (Fraxinus pennsylvanica) contains 1201 DNA markers in 23 linkage groups spanning 2008.87cM. The green ash map shows stronger synteny with coffee than tomato. Green ash (Fraxinus pennsylvanica) is an outcrossing, diploid (2n = 46) hardwood tree species, native to North America. Native ash species in North America are being threatened by the rapid spread of the emerald ash borer (EAB, Agrilus planipennis), an invasive pest from Asia. Green ash, the most widely distributed ash species, is severely affected by EAB infestation, yet few genomic resources for genetic studies and improvement of green ash are available. In this study, a total of 5712 high quality single nucleotide polymorphisms (SNPs) were discovered using a minimum allele frequency of 1% across the entire genome through genotyping-by-sequencing. We also screened hundreds of genomic- and EST-based microsatellite markers (SSRs) from previous de novo assemblies (Staton et al., PLoS ONE 10:e0145031, 2015; Lane et al., BMC Genom 17:702, 2016). A first genetic linkage map of green ash was constructed from 90 individuals in a full-sib family, combining 2719 SNP and 84 SSR segregating markers among the parental maps. The consensus SNP and SSR map contains a total of 1201 markers in 23 linkage groups spanning 2008.87 cM, at an average inter-marker distance of 1.67 cM with a minimum logarithm of odds of 6 and maximum recombination fraction of 0.40. Comparisons of the organization the green ash map with the genomes of asterid species coffee and tomato, and genomes of the rosid species poplar and peach, showed areas of conserved gene order, with overall synteny strongest with coffee.


DOI: 10.1007/s11103-018-0815-9
PubMed: 30604323


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The first genetic linkage map for Fraxinus pennsylvanica and syntenic relationships with four related species.</title>
<author>
<name sortKey="Wu, Di" sort="Wu, Di" uniqKey="Wu D" first="Di" last="Wu">Di Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Koch, Jennifer" sort="Koch, Jennifer" uniqKey="Koch J" first="Jennifer" last="Koch">Jennifer Koch</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA Forest Service, Northern Research Station, Project NRS-16, 359 Main Road, Delaware, OH, 43015, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Northern Research Station, Project NRS-16, 359 Main Road, Delaware, OH, 43015</wicri:regionArea>
<wicri:noRegion>43015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Coggeshall, Mark" sort="Coggeshall, Mark" uniqKey="Coggeshall M" first="Mark" last="Coggeshall">Mark Coggeshall</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forestry, Center for Agroforestry, University of Missouri, Columbia, MO, 65211, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry, Center for Agroforestry, University of Missouri, Columbia, MO, 65211</wicri:regionArea>
<wicri:noRegion>65211</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, Project NRS-14, 715 W. State Street, West Lafayette, IN, 47907, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, Project NRS-14, 715 W. State Street, West Lafayette, IN, 47907</wicri:regionArea>
<wicri:noRegion>47907</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carlson, John" sort="Carlson, John" uniqKey="Carlson J" first="John" last="Carlson">John Carlson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA. jec16@psu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30604323</idno>
<idno type="pmid">30604323</idno>
<idno type="doi">10.1007/s11103-018-0815-9</idno>
<idno type="wicri:Area/Main/Corpus">000A99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A99</idno>
<idno type="wicri:Area/Main/Curation">000A99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A99</idno>
<idno type="wicri:Area/Main/Exploration">000A99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The first genetic linkage map for Fraxinus pennsylvanica and syntenic relationships with four related species.</title>
<author>
<name sortKey="Wu, Di" sort="Wu, Di" uniqKey="Wu D" first="Di" last="Wu">Di Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Koch, Jennifer" sort="Koch, Jennifer" uniqKey="Koch J" first="Jennifer" last="Koch">Jennifer Koch</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA Forest Service, Northern Research Station, Project NRS-16, 359 Main Road, Delaware, OH, 43015, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Northern Research Station, Project NRS-16, 359 Main Road, Delaware, OH, 43015</wicri:regionArea>
<wicri:noRegion>43015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Coggeshall, Mark" sort="Coggeshall, Mark" uniqKey="Coggeshall M" first="Mark" last="Coggeshall">Mark Coggeshall</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forestry, Center for Agroforestry, University of Missouri, Columbia, MO, 65211, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry, Center for Agroforestry, University of Missouri, Columbia, MO, 65211</wicri:regionArea>
<wicri:noRegion>65211</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, Project NRS-14, 715 W. State Street, West Lafayette, IN, 47907, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, Project NRS-14, 715 W. State Street, West Lafayette, IN, 47907</wicri:regionArea>
<wicri:noRegion>47907</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carlson, John" sort="Carlson, John" uniqKey="Carlson J" first="John" last="Carlson">John Carlson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA. jec16@psu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Coffee (genetics)</term>
<term>Coleoptera (MeSH)</term>
<term>Fraxinus (genetics)</term>
<term>Gene Frequency (MeSH)</term>
<term>Genetic Linkage (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Genotyping Techniques (MeSH)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Microsatellite Repeats (genetics)</term>
<term>Polymorphism, Single Nucleotide (genetics)</term>
<term>Synteny (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Café (génétique)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Coléoptères (MeSH)</term>
<term>Fraxinus (génétique)</term>
<term>Fréquence d'allèle (MeSH)</term>
<term>Génome végétal (génétique)</term>
<term>Liaison génétique (MeSH)</term>
<term>Lycopersicon esculentum (génétique)</term>
<term>Polymorphisme de nucléotide simple (génétique)</term>
<term>Répétitions microsatellites (génétique)</term>
<term>Synténie (génétique)</term>
<term>Techniques de génotypage (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Coffee</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fraxinus</term>
<term>Genome, Plant</term>
<term>Lycopersicon esculentum</term>
<term>Microsatellite Repeats</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Café</term>
<term>Fraxinus</term>
<term>Génome végétal</term>
<term>Lycopersicon esculentum</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Répétitions microsatellites</term>
<term>Synténie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chromosome Mapping</term>
<term>Coleoptera</term>
<term>Gene Frequency</term>
<term>Genetic Linkage</term>
<term>Genotyping Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cartographie chromosomique</term>
<term>Coléoptères</term>
<term>Fréquence d'allèle</term>
<term>Liaison génétique</term>
<term>Techniques de génotypage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>The genetic linkage map for green ash (Fraxinus pennsylvanica) contains 1201 DNA markers in 23 linkage groups spanning 2008.87cM. The green ash map shows stronger synteny with coffee than tomato. Green ash (Fraxinus pennsylvanica) is an outcrossing, diploid (2n = 46) hardwood tree species, native to North America. Native ash species in North America are being threatened by the rapid spread of the emerald ash borer (EAB, Agrilus planipennis), an invasive pest from Asia. Green ash, the most widely distributed ash species, is severely affected by EAB infestation, yet few genomic resources for genetic studies and improvement of green ash are available. In this study, a total of 5712 high quality single nucleotide polymorphisms (SNPs) were discovered using a minimum allele frequency of 1% across the entire genome through genotyping-by-sequencing. We also screened hundreds of genomic- and EST-based microsatellite markers (SSRs) from previous de novo assemblies (Staton et al., PLoS ONE 10:e0145031, 2015; Lane et al., BMC Genom 17:702, 2016). A first genetic linkage map of green ash was constructed from 90 individuals in a full-sib family, combining 2719 SNP and 84 SSR segregating markers among the parental maps. The consensus SNP and SSR map contains a total of 1201 markers in 23 linkage groups spanning 2008.87 cM, at an average inter-marker distance of 1.67 cM with a minimum logarithm of odds of 6 and maximum recombination fraction of 0.40. Comparisons of the organization the green ash map with the genomes of asterid species coffee and tomato, and genomes of the rosid species poplar and peach, showed areas of conserved gene order, with overall synteny strongest with coffee.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30604323</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>99</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The first genetic linkage map for Fraxinus pennsylvanica and syntenic relationships with four related species.</ArticleTitle>
<Pagination>
<MedlinePgn>251-264</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-018-0815-9</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="UNASSIGNED">The genetic linkage map for green ash (Fraxinus pennsylvanica) contains 1201 DNA markers in 23 linkage groups spanning 2008.87cM. The green ash map shows stronger synteny with coffee than tomato. Green ash (Fraxinus pennsylvanica) is an outcrossing, diploid (2n = 46) hardwood tree species, native to North America. Native ash species in North America are being threatened by the rapid spread of the emerald ash borer (EAB, Agrilus planipennis), an invasive pest from Asia. Green ash, the most widely distributed ash species, is severely affected by EAB infestation, yet few genomic resources for genetic studies and improvement of green ash are available. In this study, a total of 5712 high quality single nucleotide polymorphisms (SNPs) were discovered using a minimum allele frequency of 1% across the entire genome through genotyping-by-sequencing. We also screened hundreds of genomic- and EST-based microsatellite markers (SSRs) from previous de novo assemblies (Staton et al., PLoS ONE 10:e0145031, 2015; Lane et al., BMC Genom 17:702, 2016). A first genetic linkage map of green ash was constructed from 90 individuals in a full-sib family, combining 2719 SNP and 84 SSR segregating markers among the parental maps. The consensus SNP and SSR map contains a total of 1201 markers in 23 linkage groups spanning 2008.87 cM, at an average inter-marker distance of 1.67 cM with a minimum logarithm of odds of 6 and maximum recombination fraction of 0.40. Comparisons of the organization the green ash map with the genomes of asterid species coffee and tomato, and genomes of the rosid species poplar and peach, showed areas of conserved gene order, with overall synteny strongest with coffee.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Di</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koch</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Service, Northern Research Station, Project NRS-16, 359 Main Road, Delaware, OH, 43015, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coggeshall</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry, Center for Agroforestry, University of Missouri, Columbia, MO, 65211, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, Project NRS-14, 715 W. State Street, West Lafayette, IN, 47907, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carlson</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA. jec16@psu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>IOS-1025974</GrantID>
<Agency>National Science Foundation (US)</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>PEN04532</GrantID>
<Agency>USDA National Institute of Food and Agriculture</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003069">Coffee</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="Y">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003069" MajorTopicYN="N">Coffee</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001517" MajorTopicYN="N">Coleoptera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031661" MajorTopicYN="N">Fraxinus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005787" MajorTopicYN="N">Gene Frequency</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008040" MajorTopicYN="Y">Genetic Linkage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060005" MajorTopicYN="N">Genotyping Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Genotyping-by-sequencing (GBS)</Keyword>
<Keyword MajorTopicYN="N">Green ash</Keyword>
<Keyword MajorTopicYN="N">Linkage map</Keyword>
<Keyword MajorTopicYN="N">Simple sequence repeats (SSRs)</Keyword>
<Keyword MajorTopicYN="N">Single nucleotide polymorphism (SNP)</Keyword>
<Keyword MajorTopicYN="N">Synteny</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30604323</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-018-0815-9</ArticleId>
<ArticleId IdType="pii">10.1007/s11103-018-0815-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2000 Feb;18(2):233-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10657137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Jun;158(2):787-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2001 Nov 7;268(1482):2211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11674868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2002 Jan-Feb;93(1):77-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Sep;105(4):622-628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2003 Jan;117(1):27-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12656570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 May;106(8):1497-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12677403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Apr;15(4):516-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1152-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16617098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 15;23(10):1289-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Jun;3(6):e106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17604455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Mar;5(3):247-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18297082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1639-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Syst Bioinformatics Conf. 2008;7:285-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19642288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2009 Mar;2009(3):pdb.prot5177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 Nov;284(5):319-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20803217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomics. 2010 Dec;9(5-6):416-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21266344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 21;6(1):e16368</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21283712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2010 May;10(3):551-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 May 04;6(5):e19379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2009 Jan;96(1):336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2009 Jan;96(1):349-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Nov;7(11):e1002354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Aug;10(6):623-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22222031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 30;485(7400):635-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22660326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Aug;40(15):e115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22730293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Oct;44(10):1098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22922876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Nov;15(5):556-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23017241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2014;59:13-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1994 Nov;89(5):551-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24177929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2014 Jan 10;4(1):29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24192835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Feb 28;9(2):e90346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24587335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Sep;12(7):851-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24698362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Sep 5;345(6201):1181-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25190796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2015 May;105(5-6):288-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25702931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 05;10(5):e0126077</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25942445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Aug 25;5:13387</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26303721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Sep 17;16:707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26383694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Oct 06;5:14852</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Dec 23;10(12):e0145031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26698853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Sep 02;17:702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27589953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jan 12;541(7636):212-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28024298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jan 12;7:2037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28149299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2018 Mar 5;11(3):414-428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29317285</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Wu, Di" sort="Wu, Di" uniqKey="Wu D" first="Di" last="Wu">Di Wu</name>
</region>
<name sortKey="Carlson, John" sort="Carlson, John" uniqKey="Carlson J" first="John" last="Carlson">John Carlson</name>
<name sortKey="Coggeshall, Mark" sort="Coggeshall, Mark" uniqKey="Coggeshall M" first="Mark" last="Coggeshall">Mark Coggeshall</name>
<name sortKey="Coggeshall, Mark" sort="Coggeshall, Mark" uniqKey="Coggeshall M" first="Mark" last="Coggeshall">Mark Coggeshall</name>
<name sortKey="Koch, Jennifer" sort="Koch, Jennifer" uniqKey="Koch J" first="Jennifer" last="Koch">Jennifer Koch</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000678 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000678 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30604323
   |texte=   The first genetic linkage map for Fraxinus pennsylvanica and syntenic relationships with four related species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30604323" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020